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Abstract 7 o ,b

Most lare deviation results give asymptotic expressions to log P(Y. 4 where

the event (Y, ý Z,,) is a large deviation event, that is, its probability goes to zero

exponentially fast. We refer to such results as weak large deviation results.9-h this paper
TV ýrI%

obtainistrong large deviation results for arbitrary random variables (4), that is, we,

obtainsasymptotic expressions for P(Y) J zx4'where (Y x r 4) is a large deviation event.

These strong large deviation results are obtained for lattice valued and nonlattice valued

random variables and require some conditions on their moment generating functions.
U 16 n

A result that gives the limit of the average probability that 4 lies in an interval

2h/bh around the point iA•, where h > 0, b4 4 and 4 -4 Y*, is referred to as a local

limit result for ( . this papery.e obtailnIocal limit theorems for arbitrary random

variables based on easily verifiable conditions on their characteristic functions. These local

limit theorems play a major role in the proofs of the strong large deviation results of this

p ap er. --- C. S

1WeiH 1bt-these results with two typical, applications.
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1. Introduction . .

The establishment of a limit distribution for a sequence of random variables *.

{Yn, n > 1} provides an approximation to P(Yn, S z). However, there are other as-

pects relating to the distribution of Yn for which one often desires an approximation. This

could be P(Yn Ž_ zx), known in the literature as a large deviation, especially when it

tends to zero exponentially fast. Another example is kn (zn), the probability density func-

tion of Y. at zX. The term, a large deviation local limit result for Yn, is used when an

asymptotic expression is established for kn(zxn) and z,X is in the range of a large deviation

"for Yn. Still another example is the average probability that Yn gives to an interval of

length 2h/bn around a point y,,,, where h > 0 and bn -+ 0o. An asymptotic expression for

(b,/2h) P(JY, - Y71,I < h/bn) will be referred to as a local limit result for Yn. We say that 4

Bn is an asymptotic expression for An, in symbols An - Bn, if A,/B, 1

The theory of large deviations for sums of i.i.d. random variables and its many

generalizations has a long history, see for instance Cramer(1938), Chernoff(1952), 4

Ellis(1984), Varadl.an(1984) etc. However, most of these results give asymptotic expres- 4.

sions for log P(Y, > Zn) and so we choose to call them weak large deviation results. For

arbitrary random variables Yn, this paper gives asymptotic expressions for P(Y, 2 xn),

which we call strong large deviation results. These results are found in Theorems 3.1 and

4.3, which impose conditions on the moment generating function (m.g.f.) of Yn. These

extend the well-known strong large deviation results for sums of i.i.d. random variables __-_-

due to Bahadur and Ranga Rao(1960).

The proofs of Theorem 3.1 and 4.3 depend on the local limit results for Yn. These

are established first in this paper in Theorems 2.1, 2.4 and 4.1. and they are in the spirit

2
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of Feller(1967) wherein can be found some of the first local limit results for sums of i.i.d.

random variables. DeHaan and Resnick(1982) established local limit results for extreme

values and Jain and Pruitt(1985) for sums of triangular arrays of i.i.d. random variables.

The local limit results in this paper apply to arbitrary random variables Y,. and require .4.

some easily verifiable conditions on their characteristic functions.

We illustrate our general results with two applications in Section 5. The first appli-

cation is a local limit result for sums of dependent random variables given by a general

model considered in Chaganty and Sethuraman(1986a). The second application is a strong

large deviation result for the Wilcoxon signed- rank statistic under the null hypothesis.

We do not study large deviation local limit results in this paper. We have ob-

tained such results for arbitrary random variables in Chaganty and Sethuraman(1985)

for one-dimensional random variables and in Chaganty and Sethuraman(1986b) for multi-

dimensional random variables.
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2. Local Limit Theorems
.4,

Let {Y,,, n > 1} be an arbitrary sequence of random variables which converge to Y

in distribution. We do not assume that Y,, has a probability density function (p.d.f.). Let
{y,,} and {b,,} be two sequences of real numbers such that y, --' y* and b, -- eo. By a

local limit theorem for Yn, we mean that if h > 0, the average probability that Yn assigns to .'- -

an interval of length 2h/b,, around yn converges to the p.d.f. of Y at y*. This is the spirit

under which local limit theorems have been studied for normalized sums of i.i.d. random

variables by Feller(1967), for normalized extreme values in DeHaan and Resnick(1982) and

for normalized triangular arrays of i.i.d. random variables in Jain and Pruitt(1985). This

section is devoted to local limit theorems for arbitrary random variables Y,,. The main

result is the theorem stated below.
4...,

Theorem 2.1. Let {Yn, n > 1) be a sequence of nonlattice valued random variables.%.. -/
4. 

-

which converge to Y in distribution. Let f,, be the characteristic function (c.f.) of Y",

for n > 1 and let f be the c.f. of Y. Suppose that there are sequences {d,,}, {b,} with

d , --* oo, b , -* oo and an integrable function f *(t) such that

(2-1) sup tfn(t)j I(Itl < d.) f *(t)
n

for each t, and

(2-2) sup I10(t) 1 ,, = o(1/b,,,)
ItI~d.

as n oo.

Then the random variable Y possesses a bounded p.d.f.f. Let h > 0 and yn y* as

n -+ oo. Then

(2-3) b-, P(IYn- ynI < h/b,) f (y*)2h 
:: ':: .

4. .. I 
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as n -* oo. Furthermore, there exists a finite constant M and an integer nh such that

(2-4) sup L- P(IYn - y<<

for n > nh.

Proof. Since j,(t) - f(t) pointwise and d -- oo, condition (2-1) implies that I is

integrable and hence Y possesses a bounded p.d.f. f. In view of condition (2-2) we can ".

find a sequence {A,`} satisfying

(2-5) A,/b- oo and AO,` -- 0

as n -+ oo. We now introduce two distribution functions Un, Vn with corresponding p.d.f.'s

u,,, v,, and c.f.'s fi, 0,, as defined below, to obtain the important identity (2-13):

2b for zo<.
(2-6) u,n(z) = I "r..hb

10 otherwise.

(2-7) f,`(t) = sin(ht/b,,)
(ht/b,,)

AY) rn sin(A,,y/2) 21
(2-8) V r (Ay/2) J , and

1~. - if-..

(2-9) 6,(t)
10 otherwise.

Let F,, be the distribution function (d.f.) of Yn, and let G,, = F,, n Un, M,, = G,, * V,,

where * denotes the convolution operation. Then the p.d.f.'s gn, m,, of Gn and M", are

given by ,,.*.

b :+h/b.,
(2-10) bn(X) L dFn(y) = - P(Y, -xI < h/b,,)

2h 2h, ~

and

(2-11) m,,(X) = g,n(z - y)v,,(y) dy.

..-' ...
z. %e
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Since the c.f. rhn.(t) of Mn, which is equal to f.(t)u2.(t)v,(t), vanishes outside of __:

[-Ai, A,], the inversion formula gives -

(2-13) = exp(-itx)r 1hn(t) dt

Subs tioing x (-13y, we get

[hf P( Y e irabe + c Y < h/b( ) W ne () ha -whcapr

in(23honegst f J-i) an ht ti buddabv-ndblwby""jY

•(2-14) l• ft•" < AO=-407...

=13 f- exp(-ityf) x()(t) dt

S= ~~~An (say). .•.,

f Relation (2-13) is the starting point of the main part of this proof and it relatesnce

P(2Yn - y1) < h/b,) to the integrable c.f. rhf(t). We first show that A which appears-

SP ( Y..- Y,. I <.....'..

in (2-13) converges to f(y*) and that it is bounded above and below by A6& .....::.

(h ±= i)/b,*) for small 17 > 0, which then establishes (2-3). Notice that•-"'

(2-14) 1 ,,<1- 1<t,,, -f"'t) dt 0 n 4

2f. 2...,. 0 .,,

0.aandl.bdr afo
:"(2-15) •~1 flld exp(-ityn.) rhn(t) dt - exp(-ity*)f(t) ,.-."

= 2by') f:'-.

from condition 2-1), the bounded convergence theorem and the inversion formula. Hence..

(2-1 6) A n, f- (Y*). -•

Now, using (2-1) and (2-14) we get our first upper bound for An: "•.-

(2-17) Ani<2.. 7r < f (t !,-.

Fix r7 > 0. We get a lower bound for An as follows: •.'"".,

An ,*'ý P(JYn. - Yn*I < (h - rl)/bn) vn (y) dy -.--

2h z1 [ <4Ab.

>- 2"h P (Jy,, YnI < (h - tl)/bn.) 1 '--r "..:_", .

-
" ,. - Sx . .

-, - "" -'S.6
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W, - - - - - - - -- - --

do* .•

Combining (2-17) and (2-18) we get

(2-19) b P(IY - y, < (h - )/b,,) • < dt.
2h iAj -27r +0

Substituting h by 2h and t7 by h, we get •••

(2-20) 2"bL p(iy, - _yn <h/b,) 1L•r J -- +2 J_ f*(t) dt

Since AnO- 0, b/A, - , we can find an integer nh so that

(2-21) sup [-P(IY. - y < h/bn) < M

where

I f*(t) dt,
- + J-00

"% uniformly in y,. This proves assertion (2-4). Now for any ri > 0, we can obtain another

upperbound for An when n > nh, by using (2-21).

An -h- P(IY,, -Y, + YI < h/b,)v,(y) dy
5-0

(2-22) < IpO-yn ynI < (h+ i)/bn) +M vn(y) dy
2-h JlvJ>n/b

b_ 4Mbnb, p(IY~y,, I~<(h+rt)/b,)+ •A•--• --
- 2h ,-...-.,

Thus, from (2-16), (2-18) and (2-22) we get that

(2-231 lirnsup b"'n -• y(.1•u < (h - i)lb,,) •.,:

* ~~~(2-23) 2 .~ -. *

_< f(y*) _<lim inf L'n g(!Y,* - I < (h + t7)/bn) r'..':
n 2h

This implies that

(2-24) < limsupn 2" P(IYn -ynI < h/n)

(h +
- h f *•#

7
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Since q > 0 is arbitrary, this establishes (2-3). ->

Theorem 2.1 is a local limit theorem for the average probability that Yn assigns to

intervals of length 2h/b,, where bn - oo. Conditions (2-1) and (2-2) of Theorem 2.1

require that the c.f. fn of Yn be bounded by an integrable function f* on 1-d, d] and

goes to zero at a suitable rate outside [-d.,4d•], where dn --+ oo. There is a trade off on

how large d4, and bn should be and the rate at which A, should go to zero outside [-d4, d•,].

Remarks 2.2, 2.3 and Theorem 2.4 explore the tradeoffs.

Remark 2.2. Suppose that there exists an integrable function f* such that f* (t) -- 0

as ItI - oo and

(2-25) sup If,(t)I <f*(t)

for all t. Then for any sequence {bn} with bn -- oo, we can find an sequence {d,} such

that d4 --. 0o and conditions (2-1) and (2-2) are satisfied. Thus when (2-25) holds, the

conclusions (2-3) and (2-4) of Theorem 2.1 hold for every sequence {bn} with bn -* 00.

The above remark is used in Example 5.1 of Section 5.

Remark 2.3. The conclusions (2-3) and (2-4) of Theorem 2.1 hold if we replace condition

(2-2) by

(2-26) 1 I(t)l d 0 as n o,

for some sequence of real numbers {A,,}, such that An - 00, and A,/b, - 0o as n 0 o0.

Theorem 2.4, stated below, shows that we can relax condition (2-2) and still obtain

the conclusions (2-3) and (2-4) for sequences {b,} such that d,/b, -- o as n - 0o.

Theorem 2.4. Let {Yn, n > 1} be a sequence of nonlattice valued random variables which

converge in distribution to Y. Assume that condition (2-1) of Theorem 2.1 holds for some

8
• -.. ::
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sequence of real numbers {dr,} with d, -- cc. Let {b,,} be a sequence of real numbers such

that bn -- co and d,,/bI, - co, that is bn diverges to co slower than dn. Let h > 0 and

y, y* as n -. co. Then the conclusions (2-3) and (2-4) of Theorem 2.1 hold.. .

Proof. Let )A = d,, then condition (2-26) trivially holds. Thus Theorem 2.4 follows from

Theorem 2.1 and Remark 2.3. .

The next theorem provides a convienent way to verify condition (2-1) of Theorem 2.1.

In Lemma 3.2 of Section 3 we use Theorem 2.1 and this method of verification of condition

(2-1), in the midst of our proof of a strong large deviation theorem for arbitrary random

variables Tn.

* Theorem 2.5. Let {Yn, n > 1} be a sequence of random variables with c.f.'s {fn(t),

n > 1}. Let {d,} be a sequence of real numbers such that d, -f co. Let g,(t) "

d- 2 log f,,(d,,t) I be a. well defined function of t and twice differentiable in a neighborhood

of the origin. Suppose that there exists an 6 > 0, a > 0 such that for ItI <6, - -

(2-27) 9. W ..

for all n > 1. Then condition (2-1) of Theorem 2.1 is satisfied with d, replaced by d,,.

Proof. An application of Taylor's theorem yields for Itl < 6,

gn W0 = (0) + t9' (0) + gi?2 Cn

t
2

(2-28) = n)
2

at2 * *1

where ý, is such that .n < itl < 6. Therefore for Itl < 6d,,

Cat2

(2-29) gn(t/d) < 2d..

tt2d % Oo-"°



.or

Thus for Itl < 6dm, we have for all n > 1,

( exp(d'(g.(t/d.)))
(2-30). .,-

(3)exp(-at 2 /2),

which is an integrable function. This completes the proof of the theorem. --

oV

Remark 2.6. It may seem that the restriction of nonlattice random variables appears

only in the statements of Theorem 2.1 but not in the proofs. A close look at condition

(2-2) shows that it cannot hold if Y,, is lattice valued. The restriction to nonlattice random -j

variables was therefore made more prominent in the statement of the Theorem 2.1 rather

than tuck it away in condition (2-2). We treat the case of lattice valued random variables

in Section 4.

.5,...-, _5
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3. Strong Large Deviation Theorems

Large deviation results for arbitrary sequences of random variables, {T,,, n > 1}, ob-

tain asymptotic expressions for log P(T, /a,, > m,n) where the event {T,,/a,, > m, } repre-

sents a large deviation. A number of authors, including Seivers(1969), Steinebach(1978),

Ellis(1984) have obtained such results under suitable conditions on the m.g.f. of T,. In this

"section we obtain strong large deviation limit theorems for T,,, i.e., asymptotic expressions

' for P(T,,/a,,, > mn,). Similar results have been obtained before when T•, is the sum of

i.i.d. random variables by Bahadur and Ranga Rao(1960). The proofs of our strong large
6%.

deviation results depend heavily on the local limit theorems of Section 2. We shall develop

some notation before stating the main theorem.

Let {T,, n > 1} be an arbitrary sequence of nonlattice random variables with m.g.f.

"-.(z) = E[exp(zT,)], which is nonvanishing and analytic in the region fl = {z E C: IzJ <

"a}, where a > 0 and C is the set of all complex numbers. Let {a,,} be a sequence of real

numbers such that a,, oo. Let

(3-1) 0,b(z) = a'Ilogo,(z), for z E 0, and

(3-2) -Yn(u) = sup [us - n,%(s)], for real u.

"Let {m,, n 1} be a sequence of real numbers such that there exists a sequence

S{r,} satisfying 0' (r,) = m, and d < r, < a, < a for some positive numbers al,d

"and for all n > 1. The boundedness of r,• below by d > 0 is satisfied for example if .*. .

"liminf,,[(m, - E(T,,)/a,,)] > 0. Theorem 3.1 below gives a strong large deviation result

for T,,. One should note that condition(A) of Theorem 3.1 implies that (T. - E(T,,))/a, ,

converges to zero, in probability. Also, conditions (A) and (C) of Theorem 3.1 together

' r -A1
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,.p.. .

imply that (T. - E(T,))/ Var(T,) converges in distribution to the standard normal. A

strong large deviation result for T, when rn - 0 is proved later in Theorem 3.3. We now

state the first theorem of this section.

Theorem 3.1. Let {Tn, n > 1} be an arbitrary sequence of nonlattice random variables. %

Let {mn} be a sequence of real numbers such that there exists {r,.} satisfying O.(Tr,) =m,,

and d < r,, < a,, for all n > 1. Assume the following conditions for Tn:

(A) There exists 0 < oo such that i',(z)I < 0 for all n > 1, z E [I.

(B) There exists 61 > 0 such that

t.) .V,...:,

for all 0 <6< 61. I

(C) There exists a > 0 such that O4(r,,) > a for all n > 1.

Then

* (33�) (~ \ exp(-a•n(mn))(3-3) P T,, _> M,, %.'-,P--,-r:

Proof. Let Kn, be the distribution function of Tn. Let T,* be a random variable such that'U'
(3-4) P(Tn, < y) = H.,(y) = exp(urn - anOn(r,)) dK,(u). .

Let Tn'=T, - ann. Then the c.f. of Tn' is given by ....

(3-•) •tex.t~t~r,•On (rn + it)""'""
(3-5) E(exp(itT,') = exp(-itanm,) '" +t

Using these new random variables and the relation -yn(mn).= rn - ip,(rn), we have

P (IT >Mn') =f dKn(y)
\an JamM1

= L e':p (- yr, + anOn,(r,)) dH,,(y)

(3-6) "..-
= exp(a,nt,(rn)) E(exp(-rTT*) I(T,, > anm,))

= exp(-any"n(mn)) E(exp(-rTn)I(Tn Ž 0))

= exp(-anYn(Mn)) In (say).

12
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This step, usually called the use of Escher transformation, is the starting point of "-'-'-

most investigations in large deviations. If the conditions (A), (B) and (C) are satisfied,

Lemma 3.2 shows that Theorem 2.1 of the previous section holds for T,, and for any h > 0,

h
(3-7) r/a'()P((k- 1)h < rT,, < kh)

uniformly for bounded intervals of k. Also, there exists constants M, nh such that for

n > nh,

(3-8) Pk 1) h < r, , < kh)I < M

for all k_> 1. We now write down lower and upper bounds for/,,: I ,.

. E E[exp(-r.T) I((k - 1)h < rT, < kh)-
=1c

exp- kh) P((k - 1)h _< -r,T, < kh),

and

I,,• < • exp(-(k - 1)h) P((k - 1)h _< -rT, < kh) '

(3-10)

+ E exp(-(k - 1)h) P((k - 1)h < r,,, < kh)
k=kk+l-

where we choose kh - [1/h 2 ]. Using (3-7) and (3-8) we get

lim inf [vl"2"•rrVa.¢ 1,,] >: L exp (- kh) h'.-""

(3-11) J=1

h(exp(-h) - exp(-(kh + 1)h))

1 - exp(-h) .'

a n d % " % -. .-I6

MPAVlim sup [-127-r aeOý (n .
C ,. .":.'

(3-12) L Z exp(-(k - 1)h) h + E MV2-exp(-(k - 1)h) h <.'

h(1 - exp(-khh)) Mv2"rexp(-khh)
1 - exp(-h) 1 - exp(-h)

13
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Letting h -- 0 we get from (3-11) and (3-12), LP

(3-13) I~/)

This completes the proof of Theorem 3.1.0-

Lemma 3.2. Let {T', n > 1} be a sequence of random variables as in Theorem 3.1.

Assume that the conditions (A), (B) and (C) of Theorem 3.1 are satisfied. Then for any

"h > 0, (3-7) holds uniformly for bounded intervals of k. Further there exists constants

M, nh such that for n > nh, (3-8) holds for all k > 1.

Proof. Let d, = V'ant•(r,). The lemma follows once we verify the conditions of Theorem

2.1 with Y,, - Tn/dn. The c.f. of Y,., is given by

(3-14) in,(t) = ( + it/dn) exp(-it,,a/d)

Since 'n(z) = a- lognm(z) is a well defined and analytic •unction in fl, and IrnI < a,,

the following expansion is valid for Iti < (a - ai)/2 and n > 1:

(3-15) ?Pn(rn + it) = 'k,(r,) + it¢n(r,•) - (t2 /2)04,(rT) + R,(r, + it).

Using condition (A) and Cauchy's theorem for derivatives we get for Itj < (a - a,)/2,

% -"+it) (a -k

% and

." 220 ItI3 :-.(3-17) IRC(rn + it)l I (-)1t"'

-(a - a) 3

Therefore for Itl < (a - a,)/2, we get from (3-15), (3-17) and condition (C), A-

(3-18)
log f,(t) = -(itm,,,a,) /d + an [(n(rI + it/d,) - ¢0(rn)]

= -(itma,,)/d, + a, [itO/4(r) /d, - (t 2 0/4(r,))/(2d2) + R, (r, + it/dn)]

= -t 2 /2 + aR,(r, + it/d,),

14
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and .. ;

201t13  0
(3-19) Ia"R'(r" + it/d,) 1 ad c (a - al)3  0, as n -o.

Hence Y, = T'/dn, converges in distribution to the standard normal random variable. We

now proceed to verify conditions (2-1) and (2-2) of Theorem 2.1. Let

g9(t) = d2 log 11n(dnt) I
't. \* -.-

(3-20) _-itMn 1 .--

+ rn) [Real(On(Tr, + it)) -V,(r,)]

Thus

Real(?4I(rn + it))9n'€0 =n/,( ,) .,s,

Real(tb4(rn) + itO•)(3-21) On"(rn) ::-:

= -1 + Real(itO*/tP"(r,))

<-1 + Jt]Ona/,,,

where 0* is an appropriate complex number. By (3-16) we get that

(3-22) Id _ (a - al)3 for n > 1.

Therefore we can find 6 > 0 such that for tI, <6, b.-
J

(3-23) gn(t) • -(1/2) for all n > 1.

This verifies condition (2-1) of Theorem 2.1 with d, replaced by 6d,, as noted in Theorem %.*-

q 2.5. Now, from condition (B) we get that

sup I-(t)I = SUP
._ItI>6 .

"(3-24) = 1

1. 41
,.-..."
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since r,, is bounded and d,, = O(V/'•). This verifies condition (2-2) of Theorem 2.1 with %

b. = rdn. The assertions (3-7) and (3-8) now follow from (2-3) and (2-4) respectively. r

We now turn our attention to the case where rT --+ 0 as n -- oo, but not very fast.

More specifically, we require that , --* o. In this case we can get the stronger result ---

that the conclusion of Theorem 3.1 holds without condition (B).

Theorem 3.3. Let {T,, n > 1} be an arbitrary sequence of nonlattice random variables.

Let {m,} be a sequence of real numbers such that there exists a sequence {rm} satisfying

" n = mm, r,, > 0. Also assume that r, -- 0 and ,,Va/ -- 0o. Let T, satisfy the

conditions (A) and (C) of Theorem 3.1. Then

(3-2) p mm) exp(-an-ym (Mn))(3-25) P TLn >_ Mn,•V'r,', (,) i::

The proof of Theorem 3.3 is similar to the proof of Theorem 3.1. The only change is

that we apply Lemma 3.4 instead of Lemma 3.2 to obtain (3-7) and (3-8).

Lemma 3.4. Let {T,! n > 1} be a sequence of random variables as defined in the proof

of Theorem 3.1. Let rn -- 0 and r,,N/a -- co. Assume that conditions (A) and (C) of

Theorem 3.1 are satisfied. Then for any h > 0, (3-7) holds for bounded intervals of k.

Further, there exists constants M, nh such that for n > nh, (3-8) holds uniformly for all

k >1.

Proof. As before let Y, = TJ/dm, where dn = \/~a-n~"(rn). We have already seen that in

Lemma 3.2, Yn converges in distribution to standard normal random variable if conditions

(A) and (C) are satisfied. Also, Y,, satisfies condition (2-1) of Theorem 2.1. Let bn = rd,.

The assumptions on rm imply that b, --+ 0o and din/bn - oo as n -- 0o. Therefore the

conclusions (2-3) and (2-4) are valid for Y, by Theorem 2.4. This proves Lemma 3.4. 0>

-.. 16
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%4. The Lattice Case .\-.-
.4 *%-.
.e o• -.

This section primarily deals with local limit theorems and strong large deviation the- -.. ,.

orems for lattice valued random variables. These theorems are analogous to the theorems .4 '

for nonlattice valued random variables of the previous two sections.

Theorem 4.1. Let Y,, be a lattice valued random variable taking values in the lattice

{cn + kh, : k = 0, ±1, ±2,...}, where h, > 0 and n > 1. Assume that the span h, of Yn,

converges to zero as n -- 0o. Let Yn, converge in distribution to Y. Let f,. be the c.f. of .

Y, and f be the c.f. of Y. Let {d,} be a sequence of real numbers with d, - oo. Assume

that there exists an integrable function f* such that

(4-1) sup l.,(t)I I(ItI < 4) f M(t)
n

for each t, and

(4-2) sup Ifn(t) = On o(h,), as n -- oo.
d.<ItI<i/h.

Let y,, be in the range of Y,,, such that y,, converges to y*, as n -- oo. Then

(4 -3 ) 1, Y " f """

where f is the p.d.f. of Y. Also, there exists a constant M < oo, and no such that for

n > no,
* ."%.' ,O

(4-4) < M

uniformly in y.

17
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Proof. Let y,. is a possible value of Y,,. Then an application of the inversion formula "..

yields

(4-5)
2 Y Y- !-,q , ,•(t) exp(-ity,,) dt.:'•

I .f(t) exp(-ity.) dt + ...(t) exp(-itY) dt

=1.1, + I ,,2 (say)."., ,'

It is easy to check that condition (4-1) and Dominated convergence theorem imply that

I,., converges to f(y*) (1/27r) f f(t) exp(-ity*) dt. Next

11.21 •5 SU Ifndt)I t..

%n d'< -3. r o

-- t-..

( 4-6)

which converges to zero as n - oo, by condition (4-2). This completes the proof of (4-3). "-

Next, from (4-5) and (4-6) we get ,'Z

P p(y, =Y) <f(t I dtd + L":
1, ~ ir..-•.-.

(4-7) < If*(t)I dt + --

<If - f(t)j dt = M,

uniformly in y, for sufficiently large n > no. This completes the proof of the theorem. .'

Remark 4.2. In the above Theorem 4.1, it is assumed that d, < 7r/h, for all n > 1.

Suppose on the contrary that d, >_ 7r/hn for all n > n1 . The above proof shows that

the conclusions (4-3) and (4-4) hold. The condition (4-2) becomes vacuous and should be

ignored. V,

The next theorem provides an estimate of the large deviation probability for arbitrary "'

sequence {T,, n > 1} of lattice valued random variables. We begin with some preliminar-

* ~~ies. 
f..
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Let {T,,, n > 1} be an arbitrary sequence of lattice valued random variables taking

values in the lattice {t,,, + kp,, : k = 0, ±1, ±2,....}, pn > 0. Let the c.f. of Tn, OS(z), be

analytic and nonvanishing in the region 0l = {z E C : Izi < a}. Let {a,,} be a sequence of

real numbers such that a,, -p 0 and Pn~ =O(Vra-). Let

(4-8) iknz) a-'log0(z),

be a well defined analytic function on fl. Let {mn} be a sequence of real numbers contained

in the range of Tn/an, such that there exists 0 < r,,, <a, < a satisfying ifi (,rn) = Mn and

r/-an oc, as n -o 0. With this notation we are ready to state our next theorem.

Theorem 4.3. Assume that T,1 satisfies conditions (A), (C) of Theorem 3.1 and the

following condition (B'):

(B') There exists 61 > 0, such that for 0 < 6 < 61,

sup (-rnn + it) -[ PJ

6•ItI<V/p. On(. Vn
Then

(4p (T,1 >M)Pn exp(-an~Y,(Mn))%
kan >f 2r V' ain,~ (1-) exp (-Pnr,4)

where -Yn(mn) = nr -nT)

Proof. Since Mn is in the range of Tn/an, we can write anm= tn. + In~ for some integer .-

In. Consider

i' (an~ ) P(Tn tn. + Inn

-Z P(Tn = tn + kPn)

(4-10) 00

-exp(-an-Yn(Mn)) z exp(a.-yn,(mn))P(Tn =tn~ + kp,~)

-exp(-an-yn(Mn)) exp(-(k -In) Pn TO Pn (k)

1=9

%.' N '6



. '.4.

where

exp((t, + kp,)r,) -T=t + )(4-11)P P,(k) =P(TL t,, + kp,). .-'".

%'

Let us introduce for each n > 1 a lattice valued random variable T,, which takes the

value (k - l1)p,, with probability Pn(k). Therefore, we can rewrite (4-10) as

p L- > m,, = exp(-anyn(mn)) E(exp(-r.TT) I(T' Ž 0))
(4-12) an

= exp(-a,•,•(n,)) In (say).

Let d, = v4'Oa, )(rj and Y,, = Tn/d,. Then Y, is a lattice valued random variable

with span h, = p,/d,. Note that h,, --. 0 as n -- oo. If the conditions (A), (B') and (C)

are satisfied, the next Lemma 4.4 shows that Y,, converges in distribution to the standard

normal and satisfies the hypothesis of Theorem 4.1. Thus we obtain
1. P(Y = __ as -.1..-.:

0413 h'n 72=7=r-

uniformly in k E [-k,,k,], where kh, -- 0. Also, there exists M < oo and no such that
for n > no,

for all k. We are now in a position to evaluate the expectation on the r.h.s. of (4-12).

Consider

I, = E(exp(-dnrnY.)I(Y, Ž 0))

4- exp(-kpnrn)P(Yn = kh,).
k=O

Let k, = nd,/rp•J'/2 . Note that kh, --+ 0 and kpnr, -*c0 since r,,V/ --. 0o. A lower

bound for the r.h.s. of (4-15) is

(4-16) • exp(-kprn) P(Y- khn)
k=O

20 +" ""
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and an upper bound is given by

(4-17) Zexp(-kp,r.)P(Y =kh) + Mh, exp(-kp,,r,,,)
k=O k=k.+l5+.

wherein we have used (4-14). Combining (4-15), (4-16) and (4-17) we get

lim inf (1 exp(-pr,)) 1, >. ini ( - expn (kp,.-,))
(4-18)h

and

(4-19) i p (n -,, + limsup(Mexp(-knpr,))

1

(4-20) In
(1 exp(-pnrn)) V'2".

The proof of the theorem is completed substituting (4-20) in (4-12). 0

We now state and prove Lemma 4.4 which was used in a major way in the proof of

the above theorem. -

Lemma 4.4. Let Y, be a lattice valued random variable taking values in the lattice

{(k - ln)h, : k = 0•:±1,:±2,...}, with probabilities {P,,(k) : k = 0,±1,:±2,...}, where

P, is given by (4-11). Let h, --* 0 as n --* oo. If the conditions (A), (B') and (C) are r.
satisfied then Y, converges in distribution to standard normal. Furthermore, (4-13) holds

uniformly in k E [-kn, k,], where khn --+ 0 and the inequality (4-14) holds for all k.

Proof. The lemma will be proved once we verify that Y, satisfies the conditions of Theorem

21
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4.1. The c.f. of Y,, is given by

f.(t) = E(exp(itY,))
00

exp(it(k - l•)h,,)P,,(k)

k=00
(4-21) 00 -(', .+ p.

(4-21) - Z exp(it(k - l,,)h,, + (t,. + kp,)r,) P(T, = t,,r + k,))

, .. , ,¢,(r,,+ it/d,,) :.•
- exp(-itmna,./da,]) -

wherein we have used the fact am,, = t,, + 1,,p,,. As in Lemma 3.2, we can show that

* f,,(t) converges to exp(-t 2 /2) and hence Y,, converges in distribution to standard normal.

Imitating the proof of Lemma 3.2, we can also show that if conditions (A), (B') and (C)

are satisfied then f](t) satisfies the conditions of Theorem 4.1. The rest of the Lemma 4.4 V.

follows from Theorem 4.1. .

W

p22
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5. Applications

In this section we give two typical applications to illustrate the large deviation limit

theorems and strong large deviation limit theorems of the previous sections. The first " -

example is a local limit result and illustrates Theorem 2.1. The second example is a strong

large deviation result for a lattice valued random variable and illustrates Theorem 4.3.

Example 5.1. This example applies to a general class of sums of dependent random

variables considered in Chaganty and Sethuraman(1986a). Though it was proved in that

paper that the limit distribution could be both normal and nonnormal, our example applies
only to the case where the limit distribution is normal. We first present a particular

application and then state a more general application referring to conditions found in

Chaganty and Sethuraman(1986a).

LetX•- { ') X•'),"", X(' } be a triangular array of random variables with joint density

function

4n

(5-1) dQ,(x) = z',(27r)-/ [cosh(sn/V'2in)]' exp(- E 2/2) dx,

where x = (XI,... ,z), s, = z X1 + + X, and z, is a normalizing constant. Such de-

pendent random variables arise in generalized Curie-Weiss models used to describe ferro-

magnets. The constant V/2 inside the argument of the cosh function above plays an impor-

tant role. Example 4.4 of Chaganty and Sethuraman(1986a) can be modified or Theorem

3.7 of that paper can be used directly to show that Y_ L + ... + X(±))/v/n con-

verges in distribution to a normal distribution with mean 0 and variance 2 (Example 4.4 of

Chaganty and Sethuraman(1986a) used the constant I instead of Vi and obtained a non-

23 .
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normal distribution under a different normalization). We will now show that Theorem 2.1

applies to Y,. Since

(5-2) (coshw)= ' exp(wy)Ay)-.-

with A,,(y) = (n_+) and Cn = {-n, -n + 2,..., n}, the c.f. of Y,, is given by

(5-3) f,(t) = E(exp(itY,))

= 12 f exp(its,/V/' + ys,,/\2n - Ex2/2)dx A. (y) ":"
_ _SCJ'5 l __ ._,

exp(_t2/2)z- ' expuity/v•n + y'14n)AnCY),
yEC,

Since A (0) = 1, we. have

. (5-4) in (t)j < exp(-_t 2 /2) for all n and t.

. Thus from Theorem 2.1 and Remark 2.2 it follows that for any h > 0, {bn} -- oo and

Yn -- 4W

9'.?
"•" (5-5) bn P -y,< exp- -...

with o= vf.-.

From the above discussion and from a full use of Theorem 3.7 of Chaganty and Sethu-

raman(1985a) we have the following application which we state without proof.
L~~~~' fXn)X.)..Xn,)

Let 1 2{.1 X,"1} be a triangular array of random variables whose joint dis-

tribution is as given in (3.13) of Theorem 3.7 of Chaganty and Sethuraman(1985a). We

will impose conditions on the probability measure P and the index r appearing in that

Theorem. Let P be the standard normal distribution and let r = 1. Under these condi-

tions, Theorem 3.7 of Chaganty and Sethurarnan(1985a) shows that there is a sequence of

constants {mn} such that

n

.-..
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has a limiting normal distribution with mean 0 and variance a2 . Let f,,(t) be the c.f. of

Y,,. For this case, if we proceed as in the application above, we can establish (5-5) for all

n and t. This shows that (5-5) is true with the appropriate a.

Example 5.2. We now obtain a strong large deviation result for the Wilcoxon signed-rank

statistic under the null hypothesis. This stregthens the well known weak iarge deviation

results for this statistic (see Klotz(1965)).

Let {X,_, n > 1} be a sequence of i.i.d. random variables with median m. Arrange

JXi1, IX21,..., IX,, in increasing order of magnitude and assign ranks 1,2,..., n. The

Wilcoxon signed-rank statistic U,, is defined as the sum of the ranks of positive X1's. The

* statistic U,, is used to test the null hypothesis H0 : m = 0 vs H, : m $4 0. Let T,' = U,,/n.

The random variable T,, is a lattice random variable with span p, = 1/n. The c.f. of T,"

under the null hypothesis H0 is given by

n

"" (5-7) On(z) = j [(exp(kz/n) + 1)/2], z E C.
k=1I

It is easy to check that 0,.(z) is analytic and nonvanishing in the region n = {z e C :zI <

7r/2}. Let

"(5-8) On,(z)= n log 0,,(z).

We will verify that T,, satisfies all the conditions of Theorem 4.3. It is easy to check

that there exists /3 > 0 such that IVn(z)l < 3 for Izi < 7r/2. Straightforward calculations

show that 0"(r) is bounded below by a positive number a for real r such that In < 7r/2.

Thus T,, satisfies conditions (A) and (C). Now to verify condition (B') we first note that

the range of V)'(s), for real s contains the open interval (0, 1/2) for all n > 1. Thus if

,. {m,} is a sequence of real numbers contained in a proper subinterval of (1/4, 1/2) then

we can find positive numbers d, a, and a sequence {r,} such that d < rn < a, < 7r/2 -

"and V41(r,) = m, for all n > 1. Therefore V'fir,, -* oc as n cc. From the analysis in

25
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Example 3.1 of Chaganty and Sethuraman(1985) it can be seen that there exists no and

61 > 0 such that for 0 < 6 < 61,

(5-9) sup exp(-+it) inc 2 /4)

for n > no. This verifies condition (B'). Therefore the conclusion (4-9) of Theorem 4.3

holds and it provides an asymptotic expression for P(T, _ n m,). " "

. %

,.

%• % o
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